
1

Machine Learning

ُمُالماكنةتعل ُ

ُ

فصل الأولال

First Course

 أعداد

دكتور الأستاذ ال

 زياد طارق الطائي

Professor Dr.

Ziyad Tariq Al-Ta'i

 المرحلة الرابعة

بوعلوم الحاس

2

REFERENCES

1‐ Machine Learning, Tom M. Mitchell, McGraw-Hill

Science/Engineering/Math; ISBN: 0070428077, 1997.

2‐ COS 511: Theoretical Machine Learning,

http://www.cs.princeton.edu/courses/archive/spr08/cos511/s
cribe_notes/0204.pdf

3‐http://people.revoledu.com/kardi/tutorial/DecisionTree/how‐

to‐usedecision‐tree.htm

4- Introduction to Machine Learning, Alex Smola and S.V.N.
Vishwanathan, Cambridge University Press 2008.

1.1 WHAT IS MACHINE LEARNING?
The field of machine learning is concerned with the question of how to

construct computer programs that automatically improve with

experience.

Machine learning studies computer algorithms for learning to do stuff.

We might, for instance, be interested in learning to complete a task, or

to make accurate predictions, or to behave intelligently. The learning

that is being done is always based on some sort of observations or data,

such as examples (the most common case in this course), direct

experience, or instruction. So in general, machine learning is about

learning to do better in the future based on what was experienced in the

past.

The emphasis of machine learning is on automatic methods. In other

words, the goal is to devise learning algorithms that do the learning

automatically without human intervention or assistance. The machine

learning paradigm can be viewed as “programming by example”.

Often we have a specific task in mind, such as spam filtering. But rather

than program the computer to solve the task directly, in machine

learning, we seek methods by which the computer will come up with its

own program based on examples that we provide.

Machine learning is a core subarea of artificial intelligence. It is very

unlikely that we will be able to build any kind of intelligent system

capable of any of the facilities that we associate with intelligence, such

as language or vision, without using learning to get there.

These tasks are otherwise simply too difficult to solve. Further, we

would not consider a system to be truly intelligent if it were incapable of

learning since learning is at the core of intelligence.

Although a subarea of AI, machine learning also intersects broadly with

other fields, especially statistics, but also mathematics, physics,

theoretical computer science and more.

3

1.2 EXAMPLES OF MACHINE LEARNING PROBLEMS

There are many examples of machine learning problems. Much of this

course will focus on classification problems in which the goal is to

categorize objects into a fixed set of categories. Here are several

examples:

• Optical character recognition: categorize images of handwritten

characters by the letters represented.

• face detection: find faces in images (or indicate if a face is present).

• Spam filtering: identify email messages as spam or non-spam.

• Topic spotting: categorize news articles (say) as to whether they are

about politics, sports, entertainment, etc.

• Spoken language understanding: within the context of a limited

domain, determine the meaning of something uttered by a speaker

to the extent that it can be classified into one of a fixed set of

categories.

• Medical diagnosis: diagnose a patient as a sufferer or non-sufferer of

some disease.

• Customer segmentation: predict, for instance, which customers will

respond to a particular promotion.

• Fraud detection: identify credit card transactions (for instance) which

may be fraudulent in nature.

• Weather prediction: predict, for instance, whether or not it will rain

tomorrow (In this last case, we most likely would actually be more

interested in estimating the probability of rain tomorrow).

Although much of what we will talk about will be about

classification problems, there are other important learning

problems. In classification, we want to categorize objects into fixed

categories. In regression, on the other hand, we are trying to

predict a real value. For instance, we may wish to predict how

much it will rain tomorrow. Or, we might want to predict how

much a house will sell for.

A richer learning scenario is one in which the goal is actually to behave

intelligently, or to make intelligent decisions. For instance, a robot

needs to learn to navigate through its environment without colliding

with anything. To use machine learning to make money on the stock

market, we might treat investment as a classification problem (will the

stock go up or down) or a regression problem (how much will the stock

go up), or, dispensing with these intermediate goals, we might want the

computer to learn directly how to decide to make investments so as to

maximize wealth. A final example is game playing where the goal is for

the computer to learn to play well through experience.

4

1.3 GOALS OF MACHINE LEARNING RESEARCH

The primary goal of machine learning research is to develop general

purpose algorithms of practical value. Such algorithms should be

efficient. As usual, as computer scientists, we care about time and space

efficiency. But in the context of learning, we also care a great deal about

another precious resource, namely, the amount of data that is required

by the learning algorithm.

Learning algorithms should also be as general purpose as possible. We

are looking for algorithms that can be easily applied to a broad class of

learning problems. Of primary importance, we want the result of

learning to be a prediction rule that is as accurate as possible in the

predictions that it makes.

Occasionally, we may also be interested in the interpretability of the

prediction rules produced by learning. In other words, in some contexts

(such as medical diagnosis), we want the computer to find prediction

rules that are easily understandable by human experts.

As mentioned above, machine learning can be thought of as

“programming by example.”

What is the advantage of machine learning over direct programming?

First, the results of using machine learning are often more accurate

than what can be created through direct programming. The reason is

that machine learning algorithms are data driven, and are able to

examine large amounts of data. On the other hand, a human expert is

likely to be guided by imprecise impressions or perhaps an examination

of only a relatively small number of examples.

5

1.4 LEARNING MODELS
To study machine learning mathematically, we need to formally define

the learning problem. This precise definition is called a learning model.

A learning model should be rich enough to capture important aspects of

real learning problems, but simple enough to study the problem

mathematically. As with any mathematical model, simplifying

assumptions are unavoidable.

A learning model should answer several questions:

• What is being learned?

• How is the data being generated? In other words, where does it come

from?

• How is the data presented to the learner? For instance, does the

learner see all the data at once or only one example at a time?

• What is the goal of learning in this model?

1.5 A CONCEPT LEARNING TASK
Much of learning involves acquiring general concepts from specific

training examples. People, for example, continually learn general

concepts or categories such as "bird," "car," "situations in which I

should study more in order to pass the exam," etc. Each such concept

can be viewed as describing some subset of objects or events defined

over a larger set (e.g., the subset of animals that constitute birds).

Alternatively, each concept can be thought of as a boolean-valued

function defined over this larger set (e.g., a function defined over all

animals, whose value is true for birds and false for other animals).

To ground our discussion of concept learning, consider the example

task of learning the target concept "days on which my friend Aldo

enjoys his favorite water sport." Table 2.1 describes a set of example

days, each represented by a set of attributes. The attribute EnjoySport

indicates whether or not Aldo enjoys his favorite water sport on this

day. The task is to learn to predict the value of EnjoySport for an

arbitrary day, based on the values of its other attributes.

What hypothesis representation shall we provide to the learner in this

case?

Let us begin by considering a simple representation in which each

hypothesis consists of a conjunction of constraints on the instance

attributes. In particular, let each hypothesis be a vector of six

constraints, specifying the values of the six attributes Sky, AirTemp,

Humidity, Wind, Water, and Forecast. For each attribute, the

hypothesis will either

 Indicate by a "?' that any value is acceptable for this attribute,

 Specify a single required value (e.g., Warm) for the attribute, or

 Indicate by a "Ø" that no value is acceptable.

6

1.6 CONCEPT LEARNING AS SEARCH

The goal of the concept learning search is to find the hypothesis that

best fits the training examples.

7

8

1.8 Find S Algorithm:

9

10

1.9 VERSION SPACE
The set of all valid hypotheses provided by an algorithm is called

version space (VS) with respect to the hypothesis space H and the given

example set D.

1.10 CANDIDATE-ELIMINATION ALGORITHM TO

OBTAIN VERSION SPACE:
The Candidate-Elimination algorithm finds all describable hypotheses

that are consistent with the observed training examples.

11

12

13

1.10 DECISION TREE LEARNING

Decision tree learning is a method for approximating discrete-valued

target functions, in which the learned function is represented by a

decision tree. Learned trees can also be re-represented as sets of if-then

rules to improve human readability.

These learning methods are among the most popular of inductive

inference algorithms and have been successfully applied to a broad

range of tasks from learning to diagnose medical cases to learning to

assess credit risk of loan applicants.

14

1.10.1 DECISION TREE REPRESENTATION

Decision trees classify instances by sorting them down the tree from the

root to some leaf node, which provides the classification of the instance.

Each node in the tree specifies a test of some attribute of the instance,

and each branch descending.

From that node corresponds to one of the possible values for this

attribute. An instance is classified by starting at the root node of the

tree, testing the attribute specified by this node, then moving down the

tree branch corresponding to the value of the attribute in the given

example. This process is then repeated for the sub-tree rooted at the

new node.

Figure 3.1 illustrates a typical learned decision tree. This decision tree

classifies Saturday mornings according to whether they are suitable for

playing tennis. For example, the instance

Would be sorted down the leftmost branch of this decision tree and

would therefore be classified as a negative instance (i.e., the tree

predicts that PlayTennis = no).

15

Such problems, in which the task is to classify examples into one of a

discrete set of possible categories, are often referred to as classifications

problems.

1.10.2 The Basic Decision Tree Learning Algorithm:
Most algorithms that have been developed for learning decision trees

are variations on a core algorithm that employs a top-down, greedy

search through the space of possible decision trees. This approach is

exemplified by the ID3 algorithm and its successor C4.5, which form the

primary focus of our discussion here. Basic algorithm, ID3, learns

decision trees by constructing them top down, beginning with the

question "which attribute should be tested at the root of the tree? To

answer this question, each instance attribute is evaluated using a

statistical test to determine how well it alone classifies the training

examples.

1. 10.3 Which Attribute is The Best Classifier?
The central choice in the ID3 algorithm is selecting which attribute to

test at each node in the tree. We would like to select the attribute that is

most useful for classifying examples. What is a good quantitative

measure of the worth of an attribute? We will define a statistical

property, called information gain that measures how well a given

attribute separates the training examples according to their target

classification. ID3 uses this information gain measure to select among

the candidate attributes at each step while growing the tree.

1.10.4 Entropy Measures Homogeneity of Examples:
In order to define information gain precisely, we begin by defining a

measure commonly used in information theory, called entropy, that

characterizes the (im) purity of an arbitrary collection of examples.

Given a collection S, containing positive and negative examples of some

target concept, the entropy of S relative to this Boolean classification is

16

17

1.10.5 Information Gain Measures The Expected Reduction in

Entropy:
Given entropy as a measure of the impurity in a collection of training

examples, we can now define a measure of the effectiveness of an

attribute in classifying the training data. The measure we will use,

called information gain, is simply the expected reduction in entropy

caused by partitioning the examples according to this attribute. More

precisely, the information gain, Gain(S, A) of an attribute A, relative to

a collection of examples S, is defined as

18

1.10.6 Building Decision Tree:

From table D and for each associated subset Si , we compute degree of

impurity. We have discussed about how to compute these indices in the

previous section. To compute the degree of impurity, we must

distinguish whether it is come from the parent table D or it come from a

subset table Si with attribute i. If the table is a parent table D, we

simply compute the number of records of each class. For example, in

the parent table below, we can compute degree of impurity based on

transportation mode. In this case we have 4 Busses, 3 Cars and 3 Trains

(in short 4B, 3C, 3T): Based on these data, we can compute probability
of each class. Since probability is equal to frequency relative, we have
Prob (Bus) = 4 / 10 = 0.4

Prob (Car) = 3 / 10 = 0.3

Prob (Train) = 3 / 10 = 0.3

Observe that when to compute probability, we only focus on the classes

, not on the attributes . Having the probability of each class, now we are

ready to compute the quantitative indices of impurity degrees.

ENTROPY

One way to measure impurity degree is using entropy.

19

Example: Given that Prob (Bus) = 0.4, Prob (Car) = 0.3 and Prob

(Train) = 0.3, we can now compute entropy as

Entropy = – 0.4 log (0.4) – 0.3 log (0.3) – 0.3 log (0.3) = 1.571

The logarithm is base 2.
Entropy of a pure table (consist of single class) is zero because the

probability is 1 and log (1) = 0. Entropy reaches maximum value when

all classes in the table have equal probability. Figure below plots the

values of maximum entropy for different number of classes n, where

probability is equal to p=1/n. I this case, maximum entropy is equal to -

n*p*log p. Notice that the value of entropy is larger than 1 if the

number of classes is more than 2.

20

Table D

If the table is a subset of attribute table Si, we need to separate the

computation of impurity degree for each value of the attribute i.

21

For example, attribute Travel cost per km has three values: Cheap,

Standard and Expensive. Now we sort the table Si = [Travel cost/km,

Transportation mode] based on the values of Travel cost per km. Then

we separate each value of the travel cost and compute the degree of

impurity (either using entropy, gini index or classification error).

INFORMATION GAIN
The reason for different ways of computation of impurity degrees

between data table D and subset table S i is because we would like to

compare the difference of impurity degrees before we split the table (i.e.

data table D) and after we split the table according to the values of an

attribute i (i.e. subset table Si) . The measure to compare the difference

of impurity degrees is called information gain . We would like to know

what our gain is if we split the data table based on some attribute

values.

22

Information gain is computed as impurity degrees of the parent table

and weighted summation of impurity degrees of the subset table. The

weight is based on the number of records for each attribute values.

Suppose we will use entropy as measurement of impurity degree, then

we have:

Information gain (i) = Entropy of parent table D – Sum (n k /n *

Entropy of each value k of subset table Si)

For example, our data table D has classes of 4B, 3C, 3T which produce

entropy of 1.571. Now we try the attribute Travel cost per km which we

split into three: Cheap that has classes of 4B, 1T (thus entropy of 0.722),

Standard that has classes of 2T (thus entropy = 0 because pure single

class) and Expensive with single class of 3C (thus entropy also zero).

The information gain of attribute Travel cost per km is computed as
1.571 – (5/10 * 0.722+2/10*0+3/10*0) = 1.210

You can also compute information gain based on Gini index or

classification error in the same method. The results are given below.

compare the difference of impurity degrees is called information gain .

We would like to know what our gain is if we split the data table based

on some attribute values.

Information gain is computed as impurity degrees of the parent table

and weighted summation of impurity degrees of the subset table. The

weight is based on the number of records for each attribute values.

Suppose we will use entropy as measurement of impurity degree, then

we have:

Information gain (i) = Entropy of parent table D – Sum (n k /n *

Entropy of each value k of subset table Si) For example, our data table

D has classes of 4B, 3C, 3T which produce entropy of 1.571. Now we try

the attribute Travel cost per km which we split into three: Cheap that

has classes of 4B, 1T (thus entropy of 0.722), Standard that has classes

of 2T (thus entropy = 0 because pure single class) and Expensive with

single class of 3C (thus entropy also zero).

The information gain of attribute Travel cost per km is computed as

1.571 – (5/10 * 0.722+2/10*0+3/10*0) = 1.210

You can also compute information gain based on Gini index or

classification error in the same method. The results are given below.

For each attribute in our data, we try to compute the information gain.

The illustration below shows the computation of information gain for

the first iteration (based on the data table) for other three attributes of

Gender, Car ownership and Income level.

23

Table below summarizes the information gain for all four attributes. In

practice, you don't need to compute the impurity degree based on three

methods. You can use either one of Entropy or Gini index or index of

classification error.

24

Once you get the information gain for all attributes, then we find the

optimum attribute that produce the maximum information gain (i* =

argmax {information gain of attribute i}). In our case, travel cost per

km produces the maximum information gain. We put this optimum

attribute into the node of our decision tree. As it is the first node, then it

is the root node of the decision tree. Our decision tree now consists of a

single root node.

Once we obtain the optimum attribute, we can split the data table

according to that optimum attribute. In our example, we split the data

table based on the value of travel cost per km.

25

After the split of the data, we can see clearly that value of Expensive

travel cost/km is associated only with pure class of Car while Standard

travel cost/km is only related to pure class of Train. Pure class is always

assigned into leaf node of a decision tree. We can use this information to

update our decision tree in our first iteration into the following.

For Cheap travel cost/km, the classes are not pure, thus we need to split

further.
Second Iteration

In the second iteration, we need to update our data table. Since

Expensive and Standard Travel cost/km have been associated with pure

class, we do not need these data any longer. For second iteration, our

data table D is only come from the Cheap Travel cost/km. We remove

attribute travel cost/km from the data because they are equal and

redundant.

26

Now we have only three attributes: Gender, car ownership and Income

level. The degree of impurity of the data table D is shown in the picture

below.

Then, we repeat the procedure of computing degree of impurity and

information gain for the three attributes. The results of computation

are exhibited below.

27

The maximum gain is obtained for the optimum attribute Gender. Once

we obtain the optimum attribute, the data table is split according to that

optimum attribute. In our case, Male Gender is only associated with

pure class Bus, while Female still need further split of attribute.

Using this information, we can now update our decision tree. We can

add node Gender which has two values of male and female. The pure

class is related to leaf node, thus Male gender has leaf node of Bus. For

Female gender, we need to split further the attributes in the next

iteration.

Third iteration

Data table of the third iteration comes only from part of the data table

of the second iteration with male gender removed (thus only female

part). Since attribute Gender has been used in the decision tree, we can

28

remove the attribute and focus only on the remaining two attributes:

Car ownership and Income level.

If you observed the data table of the third iteration, it consists only two

rows. Each row has distinct values. If we use attribute car ownership,

we will get pure class for each of its value. Similarly, attribute income

level will also give pure class for each value. Therefore, we can use

either one of the two attributes. Suppose we select attribute car

ownership, we can update our decision tree into the final version

Now we have grown the final full decision tree based on the data.

29

Bayesian Learning:

Learning models can be used for many tasks such as:

1- Prediction: Given the Inputs: which Outputs?

2- Diagnosis: Given the Outputs: which Inputs?

3- Unsupervised: Given Inputs and Outputs: Which structure?

Bayes Theorem:

What is the most probable hypothesis h, given training data D?

A method to calculate the probability of a hypothesis based on:

- Its prior probability.

- The probability of observing the data given the hypothesis.

- The data itself.

Illustrative Example:

The Win envelope has 1 dollar and four beads in it. The Lose envelope

has three beads in it. Someone draws an envelope at random and offers to

sell it to you. Which one should we choose?

Before deciding, you are allowed to see one bead in one envelope. If it is

black, Which one should we choose? And if it is red?

30

Choosing Hypotheses:

Machine learning is interested in the best hypothesis h from some space

H, given observed training data D

Any maximally probable hypothesis is called maximum a

posteriori (MAP) hypothesis (hMAP).

note that P(D) can be dropped, because it is a constant independent of h.

31

 Example:

32

33

Artificial Neural Networks

References

1- Fundamentals of Neural Networks: Architecture, Algorithms, and

application, By Laurene Fausett.

2- Introduction to Artificial Neural Systems, By Jacek

M.Zurada,1997.

3- Neural Networks. Fundamentals, Application, Examples, By

Werner Kinnebrock.1995.

4- Neural network for identification, prediction and control. By D. T.

Pham and X. Liu.

1.1 Introduction

Artificial neural network (ANN) models have been studied for many

years with the hope of achieving "Human-like performance",

Different names were given to these models such as:

 - Parallel distributed processing models.

- Biological computers or Electronic Brains.

- Connectionist models.

- Neural morphic system.

After that, all these names settled on Artificial Neural Networks

(ANN) and after it on neural networks (NN) only. There are two

basic different between computer and neural, these are: 1- These

models are composed of many non-linear computational elements

operating in parallel and arranged in patterns reminiscent of

biological neural networks.

2- Computational Elements (or node s) are connected via weights that

are typically adapted during use to improve performance just like

human brain.

34

1.2 Areas of Neural Networks

The areas in which neural networks are currently being applied are:

1-Signal processing.

2- Pattern Recognition.

3- Control problems.

4- Medicine.

5- Speech production.

6- Speech Recognition.

 7- Business.

1.3 Theory of Neural Networks (NN)

Human brain is the most complicated computing device known to a

human being. The capability of thinking, remembering, and problem

solving of the brain has inspired many scientists to model its

operations. Neural network is an attempt to model the functionality

of the brain in a simplified manner. These models attempt to achieve

"good" performance via dense interconnections of simple

computational elements. The term (ANN) and the connection of its

models are typically used to distinguish them from biological

network of neurons of living organism which can be represented

systematically as shown in figure below :

Schematic Drawing of Biological Neurons

35

Neural Networks signals from many other neurons through input

paths called dendrites if the combined signal is strong enough, it

activates the firing of neuron which produces an o/p signal. The path

of the o/p signal is called the axon, synapse is the junction between

the (axon) of the neuron and the dendrites of the other neurons. The

transmission across this junction is chemical in nature and the

amount of signal transferred depends on the synaptic strength of the

junction. This synoptic strength is modified when the brain is

learning.

1.4 Artificial Neural Networks (ANN)

An artificial neural network is an information processing system that

has certain performance characters in common with biological

neural networks. Artificial neural networks have been developed as

generalizations of mathematical models of human cognition or neural

biology, based on the assumptions that:

1-Information processing occurs at many simple elements called

neurons.

2-Signals are passed between neurons over connection links.

3-Each connection link has an associated weight which, in a typical

neural net, multiplies the signal transmitted.

4-Each neuron applies an action function (usually nonlinear) to its

net input (sum of weighted input signals) to determine its output

signal.

A neural network is characterized by:

1- Architecture: - its pattern of connections between the neurons.

2- Training Learning Algorithm: - its method of determining the

weights on the connections.

3- Activation function.

36

1.5 Properties of ANN

1- Parallelism.

2-Capacity for adaptation "learning rather programming".

3-Capacity of generalization.

4-No problem definition.

5- Abstraction & solving problem with noisy data.

6- Ease of constriction & learning.

7-Distributed memory.

8- Fault tolerance.

2. McCulloch-Pitts Neuron Model:

The modern view of neural networks began in the 1940s with the

work of Warren McCulloch and Walter Pitts, who showed that

networks of artificial neurons could, in principle, compute any

arithmetic or logical function. Their work is often acknowledged as

the origin of the neural network field.

McCulloch-Pitts neuron model is called the perceptron model in

1943, which is shown in following figure:

 X1 w1

 X2 w2 output

 Xn wn

Xi: input which is either 0 or 1.

Wi: weight which is either +1 or -1.

T or  : threshold value.

Output= 1 if 



n

i
ii

Txw
1

 ; Output=0 if 



n

i
ii

Txw
1

.

T

37

This model is simple, but it has substantial computing potential. It

perform the basic logic operations; such as:

NOT Gate (Inverter):

 X -1 output

X Output

0 1

1 0

OR Gate (3-input):

 X1 1

 X2 1 Output

 X3 1

X3 X2 X1 Output

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

AND Gate (3-input):

 X1 1

 X2 1 Output

 X3 1

T=0

T=1

T=3

38

X3 X2 X1 Output

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Memory Cell:

Once a feed back loop is closed around the neuron as shown in figure

below we obtain a memory cell (R-S FF: when R=S=0 and R=S=1 no

change):

 Excitatory input 1

 1

 Ok+1=XK

 Inhibitory input 1

Inh. i/p Exc. i/p XK
 Ok+1

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

T=1

39

3. Neuron Model

Single-Input Neuron

A single-input neuron is shown in Figure below.

The scalar input p is multiplied by the scalar weight w to form wp ,

one of the terms that is sent to the summer. The other input, 1 , is

multiplied by a bias b and then passed to the summer. The summer

output n , often referred to as the net input, goes into a transfer

function f , which produces the scalar neuron output a . (Some

authors use the term (activation function) rather than transfer

function and (offset) rather than bias). If we relate this simple model

back to the biological neuron that we discussed in Chapter 1, the

weight w corresponds to the strength of a synapse, the cell body is

represented by the summation and the transfer function, and the

neuron output a represents the signal on the axon.

The neuron output is calculated as a = f (wp + b) . If, for instance, w

= 3 , p = 2 and b = ­ 1.5 , then a = f (3 (2) ­ 1.5) = f (4.5) The actual

output depends on the particular transfer function that is chosen.

The bias is much like a weight, except that it has a constant input of

1. However, if you do not want to have a bias in a particular neuron,

it can be omitted. Note that w and b are both adjustable scalar

parameters of the neuron. Typically the transfer function is chosen

by the designer and then the parameters w and b will be adjusted by

40

some learning rule so that the neuron input/output relationship meets

some specific goal.

3.1 Transfer Functions

The transfer function in previous figure may be a linear or a

nonlinear function of n . A particular transfer function is chosen to

satisfy some specification of the problem that the neuron is

attempting to solve. Three of the most commonly used functions are

discussed below.

Hard Limit Transfer Function:

 The hard limit transfer function, shown on the left side of Figure

below:

sets the output of the neuron to 0 if the function argument is less than

0, or 1 if its argument is greater than or equal to 0.

The graph on the right side of previous figure illustrates the

input/output characteristic of a single-input neuron that uses a hard

limit transfer function. Here we can see the effect of the weight and

the bias. Note that an icon for the hard limit transfer function is

shown between the two figures. Such icons will replace the general f

in network diagrams to show the particular transfer function that is

being used.

41

Linear Transfer Function:

 The output of a linear transfer function is equal to its input: a = n, as

illustrated in following figure:

Neurons with this transfer function are used in the ADALINE

networks. The output (a) versus input (p) characteristic of a single-

input linear neuron with a bias is shown on the right of the above

figure.

Log-Sigmoid Transfer Function:

The log-sigmoid transfer function is shown in following figure .

This transfer function takes the input (which may have any value

between plus and minus infinity) and squashes the output into the

range 0 to 1, according to the expression:

ne
a




1

1

42

The log-sigmoid transfer function is commonly used in multilayer

networks that are trained using the back propagation. Most of the

transfer functions are summarized in following table.

43

3.2 Multiple-Input Neuron:

Typically, a neuron has more than one input. A neuron with R inputs

is shown in following figure. The individual inputs p 1 , p 2 ,... , p R

are each weighted by corresponding elements w 1, 1 ,w 1, 2 ,... ,w 1, R of

the weight matrix W .

The neuron has a bias b , which is summed with the weighted inputs

to form the net input n: n = w 1, 1 p 1 + w 1, 2 p 2 + ... + w 1, R p R + b .

This expression can be written in matrix form: n = Wp + b , where

the matrix W for the single neuron case has only one row. Now the

neuron output can be written as a = f (Wp + b) .

Fortunately, neural networks can often be described with matrices.

This kind of matrix expression will be used throughout this lectures.

4. Network Architectures:

Commonly one neuron, even with many inputs, may not be sufficient.

We might need five or ten, operating in parallel, in what we will call a

“layer”. This concept of a layer is discussed below.

4.1 A Layer of Neurons:

Layer A single-layer network of S neurons is shown in figure below.

Note that each of the R inputs is connected to each of the neurons

and that the weight matrix now has S rows.

44

The layer includes the weight matrix, the summers, the bias vector b ,

the transfer function boxes and the output vector a . Some authors

refer to the inputs as another layer, but we will not do that here.

Each element of the input vector p is connected to each neuron

through the weight matrix W . Each neuron has a bias bi , a summer,

a transfer function f and an output ai . Taken together, the outputs

form the output vector a. It is common for the number of inputs to a

layer to be different from the number of neurons (i.e., R  S). You

might ask if all the neurons in a layer must have the same transfer

function. The answer is no; you can define a single (composite) layer

of neurons having different transfer functions by combining two of

the networks shown above in parallel. Both networks would have the

same inputs, and each network would create some of the outputs. The

input vector elements enter the network through the weight matrix

W:

45

As noted previously, the row indices of the elements of matrix W

indicate the destination neuron associated with that weight, while the

column indices indicate the source of the input for that weight. Thus,

the indices in w3, 2 say that this weight represents the connection to

the third neuron from the second source.

4.2 Multiple Layers of Neurons:

Now consider a network with several layers. Each layer has its own

weight matrix W , its own bias vector b , a net input vector n and an

output vector a . We need to introduce some additional notation to

distinguish between these layers. We will use superscripts to identify

the layers. Specifically, we append the number of the layer as a

superscript to the names for each of these variables. Thus, the weight

matrix for the first layer is written as W1 , and the weight matrix for

the second layer is written as W2 . This notation is used in the three-

layer network shown in Figure below.

As shown, there are R inputs, S1 neurons in the first layer, S2 neurons

in the second layer, etc. As noted, different layers can have different

numbers of neurons. The outputs of layers one and two are the inputs

for layers two and three. Thus layer 2 can be viewed as a one-layer

46

network with R = S1 inputs, S = S2 neurons, and an S1 × S2 weight

matrix W2 . The input to layer 2 is a1 , and the output is a2 . A layer

whose output is the network output is called an output layer. The

other layers are called hidden layers. The network shown above has

an output layer (layer 3) and two hidden layers (layers 1 and 2).

Multilayer networks are more powerful than single-layer networks.

For instance, a two-layer network having a sigmoid first layer and a

linear second layer can be trained to approximate most functions

arbitrarily well. Single-layer networks cannot do this. At this point

the number of choices to be made in specifying a network may look

overwhelming, so let us consider this topic. The problem is not as bad

as it looks. First, recall that the number of inputs to the network and

the number of outputs from the network are defined by external

problem specifications. So if there are four external variables to be

used as inputs, there are four inputs to the network. Similarly, if

there are to be seven outputs from the network, there must be seven

neurons in the output layer. Finally, the desired characteristics of the

output signal also help to select the transfer function for the output

layer. If an output is to be either ­ 1 or 1 , then a symmetrical hard

limit transfer function should be used. Thus, the architecture of a

single-layer network is almost completely determined by problem

specifications, including the specific number of inputs and outputs

and the particular output signal characteristic. Now, what if we have

more than two layers? Here the external problem does not tell you

directly the number of neurons required in the hidden layers. In fact,

there are few problems for which one can predict the optimal

number of neurons needed in a hidden layer. This problem is an

active area of research. As for the number of layers, most practical

neural networks have just two or three layers. Four or more layers

are used rarely. We should say something about the use of biases.

One can choose neurons with or without biases. The bias gives the

network an extra variable, and so you might expect that networks

with biases would be more powerful.

47

48

Ex.2

Example 3:

A produce dealer has a warehouse that stores a variety of fruits and

vegetables. When fruit is brought to the warehouse, various types of

fruit may be mixed together. The dealer wants a machine that will

sort the fruit according to type. There is a conveyer belt on which the

fruit is loaded. This conveyer passes through a set of sensors, which

measure three properties of the fruit: shape, texture and weight.

49

These sensors are somewhat primitive. The shape sensor will output

a 1 if the fruit is approximately round and a ­ 1 if it is more elliptical.

The texture sensor will output a 1 if the surface of the fruit is smooth

and a ­ 1 if it is rough. The weight sensor will output a 1 if the fruit is

more than one pound and a ­ 1 if it is less than one pound. The three

sensor outputs will then be input to a neural network. The purpose of

the network is to decide which kind of fruit is on the conveyor, so

that the fruit can be directed to the correct storage bin. To make the

problem even simpler, let’s assume that there are only two kinds of

fruit on the conveyor: apples and oranges.

As each fruit passes through the sensors it can be represented by a

three dimensional vector. The first element of the vector will

represent shape, the second element will represent texture and the

third element will represent weight:



























































1

1

1

2

1

1

1

1

pApple

POrange

weight

texture

shape

P

50

The neural network will receive one three-dimensional input vector

for each fruit on the conveyer and must make a decision as to

whether the fruit is an orange (p1) or an apple (p2) .

The network we will discuss is the perceptron. Following figure

illustrates a single-layer perceptron with a symmetric hard limit

transfer function hardlims.

Now consider the apple and orange pattern recognition problem.

Because there are only two categories, we can use a single-neuron

perceptron. The vector inputs are three-dimensional (R = 3),

therefore the perceptron equation will be:

We want to choose the bias b and the elements of the weight matrix

so that the perceptron will be able to distinguish between apples and

oranges. For example, we may want the output of the perceptron to

be 1 when an apple is input and ­ 1 when an orange is input. Using

the concept illustrated in figure below, let’s find a linear boundary

that can separate oranges and apples.

51

From this figure we can see that the linear boundary that divides

these two vectors symmetrically is the p 1, p 3 plane.

The p 1, p 3 plane, which will be our decision boundary, can be

described by the equation: p2 = 0 , but the weight matrix is

orthogonal to the decision boundary. Therefore the weight matrix

and bias will be W = 0 1 0 , b = 0, in order to get :

  00

3

2

1

010 

















p

p

p

The bias is 0 because the decision boundary passes through the

origin. the prototype pattern p 2 (apple) for which we want the

perceptron to produce an output of 1.

Now let’s test the operation of our perceptron pattern classifier. It

classifies perfect apples and oranges correctly since

52

But what happens if we put a not-so-perfect orange into the

classifier? Let’s say that an orange with an elliptical shape is passed

through the sensors. The input vector would then be:

5. Recurrent (Feedback) Networks:

Delay Before we discuss recurrent networks, we need to introduce

some simple building blocks. The first is the delay block, which is

illustrated in Figure below.

The delay output a (t) is computed from its input u (t) according to

a(t) = u(t ­ 1) . Thus the output is the input delayed by one time step.

(This assumes that time is updated in discrete steps and takes on only

integer values.) above Eq. requires that the output be initialized at

time t = 0 . This initial condition is indicated in above figure by the

arrow coming into the bottom of the delay block.

53

Recurrent Network We are now ready to introduce recurrent

networks. A recurrent network is a network with feedback; some of

its outputs are connected to its inputs. This is quite different from the

networks that we have studied thus far, which were strictly feed

forward with no backward connections. One type of discrete-time

recurrent network is shown in figure below.

In this particular network the vector p supplies the initial conditions

(i.e., a (0) = p). Then future outputs of the network are computed

from previous outputs:

a (1) = satlins (Wa (0) + b) ,

a (2) = satlins (Wa (1) + b) , . . .

Recurrent networks are potentially more powerful than feed forward

networks and can exhibit temporal behavior.

54

6. Learning and Adaptation

Learning: Is a relatively permanent change in behavior brought

about by experience. Learning in human beings and animals is an

inferred process.

By learning rule we mean a procedure for modifying the weights and

biases of a network. (This procedure may also be referred to as a

training algorithm.) The purpose of the learning rule is to train the

network to perform some task. There are many types of neural

network learning rules. They fall into three broad categories:

supervised learning, unsupervised learning and reinforcement (or

graded) learning.

Supervised Learning:

In supervised learning , the learning rule is provided with a set of

examples (the training set) of proper network behavior: {p1,t1},

{p2,t2}, ……., {pQ,tQ},

where pQ is an input to the network and tQ is the corresponding

correct (target) output. As the inputs are applied to the network, the

network outputs are compared to the targets. The learning rule is

then used to adjust the weights and biases of the network in order to

move the network outputs closer to the targets.

 PQ O tQ

 (X)

 Distance Learning Signal (d)

 Measure

  (d,O)

Reinforcement learning:

Reinforcement learning is similar to supervised learning, except that,

instead of being provided with the correct output for each network

input, the algorithm is only given a grade. The grade (or score) is a

measure of the network performance over some sequence of inputs.

Adaption

Network

W

Distance

Generator

55

This type of learning is currently much less common than supervised

learning. It appears to be most suited to control system applications.

Unsupervised Learning:

In unsupervised learning , the weights and biases are modified in

response to network inputs only. There are no target outputs

available. At first glance this might seem to be impractical. How can

you train a network if you don’t know what it is supposed to do?

Most of these algorithms perform some kind of clustering operation.

They learn to categorize the input patterns into a finite number of

classes. This is especially useful in such applications as vector

quantization.

 pQ O

 (X)

Neural Networks Learning Rules:

W(new)=W(old)+W

Where W is the weight change.

Wi(t) = c r[wi(t),xi(t),di] Xi(t)

Where c is learning constant that determines the rate of learning.

r[wi,xi,di] is general learning rule.

 Wi(t+1)= Wi(t) + c r[wi(t),xi(t),di] Xi(t) for continuous time.
K

i

K

i

K

i

K

i

K

i

K

i
XdxwcrWW),,(1 

 for discrete time.

6.1 Hebbian Learning Rule:

The earliest and simplest learning rule for a neural net is generally

known as the Hebb rule. Hebbian learning rule suggested by Hebb in

1949. Hebb's basic idea is that if a unit Uj receives an input from a

unit Ui and both units are highly active (positive) , then the weight Wij

(from unit i to unit j) should be strengthened(increase), otherwise the

weight decrease.

Adaption

Network

W

56

Hebbian learning rule is unsupervised learning, with continuous and

discrete transfer functions .

Example:

Apply Hebbian learning rule on neuron with four inputs. And initial

weight W1 = [1 -1 0 0.5], learning constant c = 1. The training set is:




































































5.1

1

1

0

,

5.1

2

5.0

1

,

0

5.1

2

1

321
xxx

Using symmetrical hard limit transfer function:

n1=net1=[W1t x1]=   3

0

5.1

2

1

5.0011 






















O1=sgn[3]= 1; W2 =W1+c O1x1 =































































5.0

5.1

3

2

0

5.1

2

1

11

5.0

0

1

1

n2 = net2 = [W2tx2] =   25.0

5.1

2

5.0

1

5.05.132 


























O2=sgn [-0.25]=-1 ; W3 =W2+c O2x2 =



































































2

5.3

5.2

1

5.1

2

5.0

1

11

5.0

5.1

3

2

57

n3 = net3 = [W3tx3] =   3

5.1

1

1

0

25.35.21 






















O3=sgn [-3]=-1 ; W4 =W3+c O3x3 =































































5.0

5.4

5.3

1

5.1

1

1

0

11

2

5.3

5.2

1

 Using log sigmoid transfer function:

 n1=net1=[W1t x1]=   3

0

5.1

2

1

5.0011 





























 31111

1

1

1

1
)()(

ee
netfnfO

n
0.953

W2 =W1+c O1x1 =































































5.0

4295.1

906.2

953.1

0

5.1

2

1

953.01

5.0

0

1

1

n2=net2=[W2t x2]=   203.0

5.1

2

5.0

1

5.04295.1906.2953.1 

































 203.02222

1

1

1

1
)()(

ee
netfnfO

n
0.449

58

W3 =W2+c O2x2 =





















5.0

4295.1

906.2

953.1

 449.01 

























5.1

2

5.0

1























1735.0

5315.0

131.3

402.2

n3=net3=[W3tx3]=  923.3

5.1

1

1

0

1735.05315.0131.3402.2 





























 923.33333

1

1

1

1
)()(

ee
netfnfO

n
0.0194

W4 =W3+c O3x3 =























1735.0

5315.0

131.3

402.2

 0194.01 





















5.1

1

1

0























1444.0

5121.0

112.3

402.2

6.2 Perceptron Learning Rule:

This learning rule is applicable only for neurons with discrete

transfer functions, and the weights are adjusted if and only if the

output is incorrect. This learning is supervised learning rule as

shown in following figure.

 X1

 X2 O

Xn W -

 +

 X d-O d

 C

+

TLU

Threshold

Logic Unit

+ *

59

At Perceptron learning rule:
 r=di-Oi

Then: W= c (di-Oi) Xj

Example:

Apply Perceptron learning rule on neuron with three inputs. And initial

weight:

 W1 = [1 -1 0 0.5], learning constant c = 0.1. The training sets are:

.1;

1

5.0

1

1

,1;

1

5.0

5.1

0

,1;

1

0

2

1

332211 





































































 dxdxdx

Using symmetrical hard limit transfer function:

n1=net1=[W1t x1]=   5.2

1

0

2

1

5.0011 
























O1=sgn[2.5]= 1; 11 Od 

W2 =W1+c [d1-O1] x1 =

































































7.0

0

6.0

8.0

1

0

2

1

]11[1.0

5.0

0

1

1

n2 = net2 = [W2tx2] =   6.1

1

5.0

5.1

0

7.006.08.0 
























O2=sgn [-1.6]=-1 ; since  ;0;1 2222 OdOd N0 need for learning (correction).

n3 = net3 = [W3tx3] =   1.2

1

5.0

1

1

7.006.08.0 

























60

O3=sgn [-2.1]=-1 ;
33 1 Od 

W3 =W2+c [d3-O3]x3 =


































































5.0

1.0

4.0

6.0

1

5.0

1

1

)]1(1[1.0

7.0

0

6.0

8.0

6.3 Delta Learning Rule:

This learning rule is applicable only for neurons with continuous

transfer functions. This learning is supervised learning rule as shown

in following figure.

 X1

 X2 O

Xn W)(netf  -

 +

 X r d-O d

 C

At delta learning rule:

)())((xwfxwfdr
iii



)1(
2

1
)(2oxwf

i


Then: xnetfodcw
iiii
)()(

Or: xoodcw
iii

)1(
2

1
)(2

+

f(net)

* *

61

Example:

Apply Delta learning rule on neuron with three inputs. And initial weight:

W1 = [1 -1 0 0.5], learning constant c = 0.1. The training sets are:

.1;

1

5.0

1

1

,1;

1

5.0

5.1

0

,1;

1

0

2

1

332211 





































































 dxdxdx

Using log sigmoid transfer function:

 n1=net1=[W1t x1]=   5.2

1

0

2

1

5.0011 































 5.21111

1

1

1

1
)()(

ee
netfnfO

n
0.924

W2 =W1+c (d1-O1))1(
2

1 2

1
o x1 =

































































514.0

0

972.0

986.0

1

0

2

1

))924.0(1(5.0)924.01(1.0

5.0

0

1

1

2

n2=net2=[W2t x2]=   972.1

1

5.0

5.1

0

514.00972.0986.0 































 972.12222

1

1

1

1
)()(

ee
netfnfO

n
0.122

62

W3 =W2+c (d2-O2))1(
2

1 2

2
o x2 =



































































459.0

028.0

889.0

986.0

1

5.0

5.1

0

))122.0(1(5.0)122.01(1.0

514.0

0

972.0

986.0

2

n3=net3=[W3tx3]=  348.2

1

5.0

1

1

459.0028.0889.0986.0 
































 348.23333

1

1

1

1
)()(

ee
netfnfO

n
0.087

W4 =W3+c (d3-O3))1(
2

1 2

3
o x3 =






































































413.0

005.0

843.0

94.0

1

5.0

1

1

))087.0(1(5.0)087.01(1.0

459.0

028.0

889.0

986.0

2

6.4 Widrow-Hoff (Least Mean Square) Learning Rule:

This learning rule is applicable for neurons without transfer

functions. This learning is supervised learning rule. This learning

rule can be considered a special case of Delta learning rule assuming

that:

1)(;)( xwfxwxwf t

i

t

i

t

i

Then: xwdr
ii



i.e.:

xxwdcw
iii

)(

63

Example:

Perform two training steps using Widrow-Hoff learning rule? Assume the

following training data:

.25.0;

1

0

1

;1'

1

2

1

;1'

1

0

2
1

2211


























































 cwdxdx

n1=net1=   1

1

0

2

101][
1

1 



















xw t

 









































































































































875.0

25.1

625.0

1

2

1

)5.11)(25.0(

5.1

0

0

)(

5.1

1

2

1

5.100][22

5.1

0

0

1

0

2

)11)(25.0(

1

0

1

)(

222

23

2

2

111

12

xnetdcww

xwnetn

xnetdcww

t

64

Notes:

The performance of learning procedure depends on many factors

such as:-

1- The choice of error function.

2- The net architecture.

3- Types of nodes and possible restrictions on the values of the

weights.

4- An activation function.

The convergent of the net. Depends on the:-

1- Training set

2- The initial conditions

3- Learning algorithms.

The convergence in the case of complete information is better than in

the case of incomplete information.

Training a NN is to perform weights assignment in a net to minimize

the o/p error. The net is said to be trained when convergence is

achieved or in other words the weights stop changing.

Some Other Learning Rules:

1. correlation learning rule

2. Winner –Take-All learning rule

3. Outstar learning rule

